尿素(Urea)含量(酶法)检测试剂盒说明书

(分光法 48 样)

一、产品简介:

尿素(Urea)**又称碳酰胺,旧称尿素氮**(BUN),是哺乳动物和某些鱼类体内蛋白质代谢分解的主要含氮产物,也是目前含氮量最高的氮肥。

该试剂盒利用尿素在脲酶的作用下水解产生氨离子和二氧化碳,氨离子在碱性介质中与酚显色剂生成蓝色物质,该物质的生成量与尿素含量成正比。通过于640nm处检测该有色物质含量进而计算得出尿素氮含量。

二、试剂盒组分与配制:

试剂名称	规格	保存要求	备注
试剂一	液体 4.5mL×1 支	-20℃保存	可-20°C分装冻存,尽量减少反复冻融。
试剂二	液体 22mL×1 瓶	4℃保存	
试剂三			临用前向一支试剂三 A(0.8mL)中加入
	试剂三 A:0.8mL×3 支	 4℃保存	24μL 的试剂三 B(0.8mL:24μL),混匀后
	试剂三 B:0.2mL×1 支	4 C旅行	再用去离子水稀释十倍(1:9)备用,避光
			保存,最好一周内用完。
标准管	粉体 mg×2 支	4℃保存	每支临用前加1mL去离子水溶解,即浓
			度为6mg/mL的尿素,检测前再用去离 子水稀释40倍(25:975)即成0.15mg/mL
			(2.5mmol/L)的尿素。

三、所需仪器和用品:

可见分光光度计、1mL 玻璃比色皿(光径 1cm)、天平、水浴锅/金属浴/恒温培养箱、移液器、离心机、去离子水。

四、尿素(Urea)含量检测:

建议正式实验前选取 2 个样本做预测定,了解本批样品和实验流程,避免样本和试剂浪费!1、样本制备:

- ① 液体样品:澄清的液体可直接检测;若浑浊则离心后取上清液检测。
- ② 细菌/细胞样本: 先收集细菌或细胞到离心管内,离心后弃上清;取约 500 万细菌或细胞加入 1mL 生理盐水,超声波破碎细菌或细胞(冰浴,功率 200W,超声 3s,间隔 10s,重复 30 次);12000rpm 室温离心 10min,取上清,置冰上待测。

【注】: 若增加样本量,可按照细菌/细胞数量(10⁴):提取液(mL)为500~1000:1的比例进行提取。

③ 组织样本:取约 0.1g 组织,加入 1mL 生理盐水,进行冰浴匀浆。4℃×12000rpm 离心 10min,取上清,置冰上待测。

【注】:若增加样本量,可按照组织质量(g):提取液体积(mL)为 1: $5\sim10$ 的比例进行提取。

2、上机检测:

- ① 可见分光光度计预热 30min,设置温度在 37℃,设定波长到 640nm。
- ② 做实验前选取 2 个样本,找出适合本次检测样本的稀释倍数 D (如:尿液样本可用

蒸馏水稀释 100 倍)。

③ 所有试剂解冻至室温,在 EP 管中依次加入:

试剂名称(μL)	测定管	空白管(仅做一次)	标准管(仅做一次)			
样本	8					
去离子水		8				
标准品			8			
试剂一	80	80	80			
混匀, 37℃反应 10min。						
试剂二	350	350	350			
试剂三	350	350	350			
I						

混匀,37℃孵育30min 后,全部澄清液体转移至1mL 玻璃比色皿(光径1cm)中,于640nm 处读取吸光值A,△A=A 测定-A 空白。

- 【注】: 1.测定管 A 值若超过 1.5, 样本可用生理盐水或去离子水进行稀释, 稀释倍数 D 代入公式。
 - 2.若已知样本自身含有氨离子,可增加一个对照管(8μ L 样本+ 80μ L 去离子水, 37° C反应 10min 后,再依次加入 350μ L 试剂二和 350μ L 试剂三, 37° C反应 30min 后读值, $\triangle A=A$ 测定-A 对照。若对照管值低于空白管值可以省略掉对照管的测定。

五、结果计算:

1、按液体体积计算:

尿素(mg/L)=(C $_{\kappa n}$ ×V $_{\kappa}$)×10³×△A÷(A $_{\kappa n}$ -A $_{2 \mathrm{e}}$)÷V1×D=150×△A÷(A $_{\kappa n}$ -A $_{2 \mathrm{e}}$)×D 尿素(mmol/L)=(C $_{\kappa n}$ ×V $_{\kappa}$)×△A÷(A $_{\kappa n}$ -A $_{2 \mathrm{e}}$)÷V1×D=2.5×△A÷(A $_{\kappa n}$ -A $_{2 \mathrm{e}}$)×D 尿素氮(mmol/L)=(C $_{\kappa n}$ ×V $_{\kappa}$)×△A÷(A $_{\kappa n}$ -A $_{2 \mathrm{e}}$)÷V1×2×D=5×△A÷(A $_{\kappa n}$ -A $_{2 \mathrm{e}}$)×D 尿素氮(mg/dL)=(C $_{\kappa n}$ ×V $_{\kappa}$)×△A÷(A $_{\kappa n}$ -A $_{2 \mathrm{e}}$)÷V1×2×14÷10×D=7×△A÷(A $_{\kappa n}$ -A $_{2 \mathrm{e}}$)×D 2、按细胞数量计算:

尿素(ng/10⁴cell)=(C $_{\bar{k}\bar{k}}$ ×V $_{\bar{k}}$)×10⁶×△A÷(A $_{\bar{k}\bar{k}}$ -A $_{\bar{2}\bar{1}}$)÷(500×V1÷V)×D=300×△A÷(A $_{\bar{k}\bar{k}}$ -A $_{\bar{2}\bar{1}}$)×D 尿素(nmol/10⁴cell)=(C $_{\bar{k}\bar{k}}$ ×V $_{\bar{k}}$)×10³×△A÷(A $_{\bar{k}\bar{k}}$ -A $_{\bar{2}\bar{1}}$)÷(500×V1÷V)×D=5×△A÷(A $_{\bar{k}\bar{k}}$ -A $_{\bar{2}\bar{1}}$)×D 尿素氮(nmol/10⁴ cell)=(C $_{\bar{k}\bar{k}}$ ×V $_{\bar{k}}$)×10³×△A÷(A $_{\bar{k}\bar{k}}$ -A $_{\bar{2}\bar{1}}$)÷(500×V1÷V)×2×D=10×△A÷(A $_{\bar{k}\bar{k}}$ -A $_{\bar{2}\bar{1}}$)×D 3、按样本质量计算:

尿素(μ g/g)=(C $_{k\bar{n}}$ ×V $_{k\bar{n}}$)×10³× \triangle A÷(A $_{k\bar{n}}$ -A $_{2\dot{n}}$)÷(W×V1÷V)×D=150× \triangle A÷(A $_{k\bar{n}}$ -A $_{2\dot{n}}$)÷W×D 尿素(μ mol/g)=(C $_{k\bar{n}}$ ×V $_{k\bar{n}}$)× \triangle A÷(A $_{k\bar{n}}$ -A $_{2\dot{n}}$)÷(W×V1÷V)×D=2.5× \triangle A÷(A $_{k\bar{n}}$ -A $_{2\dot{n}}$)÷W×D 尿素氮(μ mol/g)=(C $_{k\bar{n}}$ ×V $_{k\bar{n}}$)× \triangle A÷(A $_{k\bar{n}}$ -A $_{2\dot{n}}$)÷(W×V1÷V)×2×D=5× \triangle A÷(A $_{k\bar{n}}$ -A $_{2\dot{n}}$)÷W×D

W---取样质量, g; C κ_{κα}----尿素标品浓度, 0.15mg/mL 即 2.5mmol/L=2.5μmol/mL;

V1---加入样本体积, 0.008mL; V_k---加入标准品体积, 0.008mL;

V---提取液体积, 1mL; 14----氮元素分子量; 500---细胞数量, 万;

2---一分子尿素含有 2 个氮元素; 60.04---尿素分子量; D---稀释倍数,未稀释即为 1。