花青素还原酶(anthocyanidin reductase, ANR)试剂盒说明书 (微板法 48 样)

一、产品简介:

花青素还原酶(ANR)参与调控花青素的含量水平以及原花青素的形成,是原花青素 单体生物合成过程中关键酶之一,在花青素积累过程中具有重要的调节作用。

花青素还原酶(ANR)在NADPH存在下使飞燕草色素转变为表没食子儿茶素和NADP+,通过检测反应体系在 340nm 处的吸光值下降速率即可得出花青素还原酶(ANR)活性大小。

二、试剂盒组成和配制:

24/13 mm > m > 24/1 mm > 11/14/14/14			
试剂名称	规格	保存要求	备注
提取液	液体 60mL×1 瓶	4℃保存	
试剂一	粉剂 mg×1 支	-20℃保存	用前甩几下或离心使粉剂落入底部, 再
			加 1.2mL 蒸馏水溶解备用。
试剂二	粉剂 mg×2 支	-20℃保存	用前甩几下或离心使粉剂落入底部,每
			支分别加 0.3mL 蒸馏水溶解备用。用不
			完的试剂分装后-20℃保存,禁止反复
			冻融,三天内用完。
试剂三	液体 15mL×1 瓶	4℃保存	
试剂四	粉剂μg×1 支	-20℃避光 保存	用前甩几下或离心使粉剂落入底部, 再
			加 0.6mL 乙醇溶解备用,用不完的试剂
			分装后-20℃避光保存,禁止反复冻融。

三、所需的仪器和用品:

酶标仪、96 孔板、台式离心机、无水乙醇、水浴锅、可调式移液器、研钵、冰。

四、花青素还原酶(ANR)活性测定:

建议正式实验前选取 2 个样本做预测定,了解本批样品情况,熟悉实验流程,避免实验样本和试剂浪费!

1、样本制备:

① 组织样本:

称取约 0.1g 组织样本,加入 1mL 提取液,冰浴匀浆,12000rpm,4℃离心 10min,取上清置冰上待测。

【注】: 若增加样本量,可按照组织质量(g):提取液体积(mL)为1:5~10的比例进行提取。

② 液体样本:若液体澄清可直接检测;若浑浊则 12000rpm,4℃离心 10min,取上清置冰上待测。

2、上机检测:

- ① 酶标仪预热 30min 以上,调节波长至 340nm。
- (2) 所有试剂解冻至室温(25℃)。
- ③ 在96孔板中依次加入:

试剂名称(μL)	测定管			
样本	20			
试剂一	10			
试剂二	10			
试剂三	150			
340nm, 室温 (25℃) 孵育 5min				
试剂四	10			

充分混匀, 立即于 340nm 处读取吸光值 A1, 后于 40℃温育 20min 后, 再读取吸光值 A2, △A=A1-A2。

- 【注】1. 若 ΔA 的值在零附近徘徊,可增加样本加样量 V1(如增至 $40\mu L$,则试剂三减少至 $130\mu L$),则改变后的 V1 需代入计算公式重新计算。
 - 2. 若起始值 A1 太大如超过 2 (如颜色较深的组织样本,一般色素较高,则起始值相对会偏高),可以适当减少样本加样量 V1(如减至 $10\mu L$),则改变后的 V1 需代入计算公式重新计算。
 - 3. 若 Δ A 的值大于 0.2,则需减少反应时间(如 40℃温育 20min 减少至 10min),则改变后的反应时间 T 需代入计算公式重新计算。

五、结果计算:

1、按样本蛋白浓度计算

酶活定义: 40℃条件下,每毫克组织蛋白每分钟氧化 1nmolNADPH 定义为一个酶活单位。 ANR 活性(nmol/min/mg prot)=[ΔA×V2÷(ε×d)×10⁹]÷(V1×Cpr)÷T =160.8×ΔA÷Cpr

2、按样本鲜重计算

酶活定义: 40℃条件下,每克组织每分钟氧化 1nmolNADPH 定义为一个酶活单位。 ANR 活性(nmol/min/g 鲜重)=[ΔA×V2÷(ε×d)×10°]÷(W×V1÷V)÷T =160.8×ΔA÷W

3、按液体体积计算

酶活定义: 40℃条件下,每毫升液体每分钟氧化 1nmolNADPH 定义为一个酶活单位。 ANR 活性(nmol/min/mL)=[Δ A×V2÷(ϵ ×d)× 10^9]÷V1÷T =160.8× Δ A

V---加入提取液体积, 1 mL;

V1---加入样本体积, 0.02mL;

V2--- 反应体系总体积, 2×10-4 L;

d---96 孔板光径, 0.5cm;

ε---NADPH 摩尔消光系数, 6.22×10³ L/mol/cm;

W---样本质量, g;

T---反应时间, 20min;

Cpr---蛋白浓度 (mg/mL), 建议使用本公司的 BCA 蛋白含量测定试剂盒。